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Abstract

Until v3.4, Filmic has been using polynomials to model the roll-off of
shadows and highlights at the upper and lower end of the dynamic range.
This is a mathematical description of hyperbolic functions to replace them.
These avoid overshooting, are easier to control and are expected to more
realistically reflect the behaviour of photographic film.
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1 Task

Filmic uses a sigmoid curve to convert from scene-referred (linear) colour space
with potentially very large dynamic range data to the output colourspace, which
is display-referred and thus has a fixed maximum brightness. In the central
range of the mapping, the output brightness is proportional to the logarithm
of the input brightness. Above and below the linear range, some function is
needed to “compress” the brightness information which cannot be represented
directly in the output colourspace. The new function needs to:

• continue tangentially from the ends of the linear segment

• end at the maximum/minimum available brightness of the output colourspace,
for a user-specified value in the input data
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• smoothly reduce the brightness gradient towards the end to approximate
the behaviour of photographic film

• not overshoot under any circumstances

• not require numeric operations to obtain the mapping function

• provide a non-zero gradient at the extreme ends to ensure non-zero con-
trast for all values within the user-specified limits of the mapping

The choice of function in equal parts on Michaelis-Menten functions 1 and the
sigmoid functions used in the original publication of the “filmic” tone mapping
2.

2 Adapting a generic hyperbolic curve

The new curves are based on the generic rational function shown in eq. 1

ψ(χ) = a
bχ2 + χ

bχ2 + χ+ c
(1)

This has three coefficients a, b and c, and produces an asymptotic curve, which
goes through (0, 0) and asymptotically approaches a as χ → ∞, as shown in
figure 2.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

f(
)

Figure 1: Curve resulting from equation 1, with all parameters set to 1.

With the available coefficients we can change the asymptote, the initial tan-
gent, and have one degree of freedom left to influence the curve shape (to some
extent). The first derivative of our curve is (derivation in appendix):

ψ′(χ) = ac
2bχ+ 1

(bχ2 + χ+ c)
2 (2)

The second derivative is rather more complicated and is only shown for χ = 0
here (derivation in appendix):

ψ′′(χ = 0) = 2a

(
b

c
− 1

c2

)
(3)

1https://en.wikipedia.org/wiki/Michaelis-Menten_kinetics
2See slides 55 and 56 in this presentation from Haarm-Pieter Duiker: http://

duikerresearch.com/2015/09/filmic-tonemapping-for-real-time-rendering
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2.1 Matching the curve to prescribed inputs

The curve in filmic needs to start at a given point with a given tangent, and end
at another given point. To simplify the derivation and calculation of coeficients,
the problem is solved in two steps:

1. Derive the solution for a curve passing through the origin, with the second
point in the positive quadrant, in the “local” construction space defined
by χ and ψ

2. “move” the resulting curve to its desired position by substituting:

χ = |x− x0| (4)

ψ(χ) = |y − y0| (5)

The equations to match the curve to the prescribed tangend g and the end
point (χ1;ψ1) solve are:

ψ′(χ = 0) = g = ac
2bχ+ 1

(bχ2 + χ+ c)
2

∣∣∣∣∣
χ=0

(6)

ψ′(χ = χ1) = ψ1 = a
bχ2

1 + χ1

bχ2
1 + χ1 + c

(7)

Equation 6 evaluates to:

g =
a

c
⇒ a = gc (8)

Inserting equation 8 into equation 7 yields:

gc
bχ2

1 + χ1

bχ2
1 + χ1 + c

= ψ1

gc
(
bχ2

1 + χ1

)
= ψ1

(
bχ2

1 + χ1 + c
)

gc
(
bχ2

1 + χ1

)
− ψ1c = ψ1

(
bχ2

1 + χ1

)
c

(
bχ2

1 + χ1 −
ψ1

g

)
=
ψ1

g

(
bχ2

1 + χ1

)
c =

ψ1

g

bχ2
1 + χ1

bχ2
1 + χ1 − ψ1

g

(9)

This means that the boundary conditions can be fulfilled using just the two
coefficients a and c, which means that b is available for use a user-definable free
curve parameter. The range within which this is possible without preventing
issues with solving the equations is addressed in section 3.

To produce the highlight roll-off curve which originates at (x0hi, y0hi) with
the tangent g and ends at (xmax, ymax), the substitution yields:

χhi = x− x0hi, x ∈ [x0hi ; xmax] (10)

χ1hi = xmin − x0hi (11)

chi =
ymax − y0hi

g

bχ2
1hi + χ1hi

bχ2
1hi + χ1hi − ymax−y0hi

g

(12)

ahi = chig (13)

yhi(x) = y0hi + ahi
bhiχ

2
hi + χhi

bhiχ2
hi + χhi + chi

(14)
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For the shadow range, the curve needs to match (x0low, y0low) (with the same
tangent g as the highlight curve), and end at (xmin, ymin):

χlo = x0lo − x, x ∈ [x0lo ; xmax] (15)

χ1lo = x0lo − xmin (16)

clo =
ymax − y0lo

g

bχ2
1lo + χ1lo

bχ2
1lo + χ1lo − ymax−y0lo

g

(17)

alo = clog (18)

ylo(x) = y0lo − alo
bloχ

2
lo + χlo

bloχ2
lo + χlo + clo

(19)

3 Bounds and Constraints

3.1 Mathematical requirements

The “useful” range of the curve (within which it provides the desired behaviour
of monotonic increase requires a positive first derivative, which according to
equation 2 means:

ac
2bχ+ 1

(bχ2 + χ+ c)
2 > 0 (20)

⇒ ac (2bχ+ 1) > 0 (21)

Since the equation has been set up to only be evaluated at χ ≥ 0, this means
that b needs to be positive to avoid the right-hand term from becoming 0, which
means that ac > 0. Since g is always positive in the application at hand, a and
c always have the same sign, since they are linked by equation 8. This means
that c must be greater than zero to provide a monotonic curve. According to
equation 9 and using positive input for ψ1, this is the case if:

bχ2
1 + χ1 −

ψ1

g
> 0 (22)

⇒ bχ2
1 + χ1 >

ψ1

g
(23)

⇒ g (bχ1 + 1) >
ψ1

χ1
(24)

Since b ≥ 0, this means that in the worst case (of b = 0), g must be greater than
ψ1

χ1
. Geometrically, that corresponds to the slope of a straight line connecting

(0, 0) to (χ1, ψ1), and is the lowest slope which can be useful in the context of
tonemapping, as otherwise the “roll-off”-curve would need to exceed the slope
of the central linear segment.

Regarding the computation of coefficients,

χ1 6= 0 ; ψ1 6= 0

⇒ x1 6= x0 ; y1 6= y0
(25)

The gradient g
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3.2 Useful range of b

The curve parameter b affects the shape of the roll-off curve and has an effect on
the second derivative at the hand-over points to the linear segment. Equation
3 shows that b can affect the sign of the second drivative at the hand-over
point, which should usually never become positive (a positive second derivative
corresponds to the curve “curving up”). As shown in the previous section, b
also must be positive (but may be zero).

To determine the maximum value which b can take without changing the
sign of the second derivative – which simultaneously is also the value at which
the second derivative becomes zero at the hand-over point – we set the equation
3 to zero:

ψ′′(χ = 0, b = bmax) = 0 = 2a

(
bmax
c
− 1

c2

)
⇒ bmax =

1

c
(26)

Inserting the general solution for c from equation 9:

bmax =
g

ψ1

bmaxχ
2
1 + χ1 − ψ1

g

bmaxχ2
1 + χ1

bmax
(
bmaxχ

2
1 + χ1

)
=

g

ψ1

(
bmaxχ

2
1 + χ1 −

ψ1

g

)
b2maxχ

2
1 + bmaxχ1 −

g

ψ1
bmaxχ

2
1 = g

χ1

ψ1
− 1

b2maxχ
2
1 + bmax

(
χ1 − g

χ2
1

ψ1

)
= g

χ1

ψ1
− 1

b2maxχ
2
1 + bmax

(
χ1 − g

χ2
1

ψ1

)
+

1

4

(
1− g χ1

ψ1

)2

= g
χ1

ψ1
− 1 +

1

4

(
1− g χ1

ψ1

)2

And applying the first binomial equation ((A+ B)2 = A2 + 2AB + B2) to the
left-hand side and the second binomial equation ((A−B)2 = A2 − 2AB +B2)
on the right side:(

bmaxχ1 +
1

2

(
1− g χ1

ψ1

))2

= g
χ1

ψ1
− 1 +

1

4

(
1− 2g

χ1

ψ1
+ g2

χ2
1

ψ2
1

)
(
bmaxχ1 +

1

2

(
1− g χ1

ψ1

))2

=
1

4

(
g2
χ2
1

ψ2
1

+ 2g
χ1

ψ1
− 3

)
bmaxχ1 +

1

2

(
1− g χ1

ψ1

)
=

1

2
±

√(
g2
χ2
1

ψ2
1

+ 2g
χ1

ψ1
− 3

)

bmaxχ1 =
1

2
±

√
g2
χ2
1

ψ2
1

+ 2g
χ1

ψ1
− 3 +

g

2

χ1

ψ1
− 1

2

bmaxχ1 =
1

2

(
g
χ1

ψ1
±

√
g2
χ2
1

ψ2
1

+ 2g
χ1

ψ1
− 3− 1

)

bmax =
1

2χ1

(
g
χ1

ψ1
±

√
g2
χ2
1

ψ2
1

+ 2g
χ1

ψ1
− 3− 1

)
(27)
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To analyse the solvability and the signs of the equation, we substitute h = g χ1

ψ1
.

Note that due to equation 24, h > 1:

bmax1 =
1

2χ1

(
h+

√
h2 + 2h− 3− 1

)
(28)

bmax2 =
1

2χ1

(
h− 1−

√
h2 + 2h− 3

)
(29)

The term within the square root is always positive, which guarantees that bmax
can always be computed. h − 1 is also always positive, which guarantees that
bmax1 is always positive. bmax2, on the other hand, is never larger than zero:

bmax2=
1

2χ1

(
h− 1−

√
h2 + 2h− 3

)
≤ 0

⇒ h− 1 ≤
√
h2 + 2h− 3

⇒ +
√
h2 − 2h+ 1 ≤ +

√
h2 + 2h− 3

⇒ h2 − 2h+ 1 ≤ h2 + 2h− 3

⇒ 4 ≤ 4h q.e.d

This means that although there are two mathematically possible solutions, there
is always exactly one positive solution, bmax1.

4 Summary of the construction process

This is a more concise summary of the equations needed to implement the
hyperbolic parametric curves, including the conditions which need to be met
to ensure that the function can always be evaluated and always provides the
desired behaviour.

4.1 Input Data

The function represents a transition from (x0, y0) to (x1, y1), with a gradient
of g imposed at the starting point. Following equation 25, the points may be
in any quadrant, as long as both points do not have neither the same x nor y
coordinate. The gradient g needs to have the same sign as that of a straight
line between the two input points, but be steeper than this line (see equation
24):

g = m
y1 − y0
x1 − x0

, m > 1 (30)

Please note that m = 1 is not included in the valid range, but m = 1 + ε (using
some small multiple of machine epsilon) is safe. The valid range can be made
to include m = 1 if m is computed on user input. If m = 1, the roll-off curve
then needs to be replaced with a straight line function, since that is what the
hyperbolic function approaches for m = 1 (but cannot represent since it requires
a horizontal asymptote, in this case at infinity).
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The limits on the curve parameter b strongly depends on the inputs, and
needs to be between 0 and informed by equation 28:

b =
β

2χ1

(
g
χ1

ψ1
− 1 +

√
g2
χ2
1

ψ2
1

+ 2g
χ1

ψ1
− 3

)
, β ∈ [0; 1] (31)

4.2 Curve construction

The input points are transformed to construction space by translating them
such that the starting point moves to (0; 0), the relative distance between both
points is unchanged, but the end point is always in the first quadrant:

χ1 = |x1 − x0|
ψ1 = |y1 − y0|

(32)

The sign of the gradient would also need to be adapted to be positive to compute
the curve parameters, but within filmic, g is already always positive. This would
only change if Darktable or filmic were to provide the option of a negative
mapping at some point in the future. This could be dealt with swiftly by
simply always discarding the sign and using the absolute value of gto compute
the curve coefficients.

The curve coefficients are then computed using equations 9 and 8

4.3 Evaluation

Transforming sample x coordinates is done using equation 32:

χ(x) = |x− x0| (33)

the resulting y as well as local gradient can be computed as follows, using ψ(χ)
(equation 1) and its derivative (equation 2:

y(x) = y0 + sgn(y − y0) ψ(χ(x)) (34)

y′(x) = sgn(g) ψ′(χ(x)) (35)
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Appendix

baseline equation (eq. 1):

ψ(χ) = a
bχ2 + χ

bχ2 + χ+ c

derived, using quotient rule:

dψ(χ)

dχ
= a

(2bχ+ 1)
(
bχ2 + χ+ c

)
−
(
bχ2 + χ

)
(2bχ+ 1)

(bχ2 + χ+ c)
2

= a

(
2bχ3 + bχ2 + 2bχ2 + χ+ 2bcχ+ c

)
−
(
2bχ3 + bχ2 + 2bχ2 + χ

)
(bχ2 + χ+ c)

2

= a
2bcχ+ c

(bχ2 + χ+ c)
2

ψ′(χ) = ac
2bχ+ 1

(bχ2 + χ+ c)
2

This is equation 2.
To compute the second derivative, we first expand the denominator and

compute its derivative: (
bχ2 + χ+ c

)2
= b2χ4 + 2bχ3 + (2bc+ 1)χ2 + 2cχ+ c2

(36)

d
(
b2χ4 + 2bχ3 + (2bc+ 1)χ2 + 2cχ+ c2

)
dχ

= 4b2χ3 + 6bχ2 + (4bc+ 2)χ+ 2c

(37)

With equations 36 and 37, we can then apply the qutient rule to the first
derivative equation:

dψ2(χ)

dχ2
= ac

2b
(
b2χ4 + 2bχ3 + (2bc+ 1)χ2 + 2cχ+ c2

)
− (2bχ+ 1)

(
4b2χ3 + 6bχ2 + (4bc+ 2)χ+ 2c

)
(bχ2 + χ+ c)

4

(38)

Since the second derivative is only used for χ = 0, the expression in equation
38 is not further simplified but only the expression for χ = 0 is listed here:

ψ′′(χ = 0) = ac
2b
(
0 + c2

)
− (0 + 2c)

(0 + c)
4

= ac
2bc2 − 2c

c4

= 2a
bc− 1

c2

= 2a

(
b

c
− 1

c2

)
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